On ordered Ramsey numbers of matchings versus triangles
Publication date
2023Published in
Proceedings of the 12th European Conference onCombinatorics, Graph Theory and ApplicationsPublisher / Publication place
Masaryk University Press (Praha)ISBN / ISSN
ISBN: 978-80-280-0344-9eISSN: 2788-3116Metadata
Show full item recordCollections
This publication has a published version with DOI 10.5817/CZ.MUNI.EUROCOMB23-013
Abstract
For graphs $G^<$ and $H^<$ with linearly ordered vertex sets, the \emph{ordered Ramsey number} $r_<(G^<,H^<)$ is the smallest positive integer $N$ such that any red-blue coloring of the edges of the complete ordered graph $K^<_N$ on $N$ vertices contains either a blue copy of $G^<$ or a red copy of $H^<$.Motivated by a problem of Conlon, Fox, Lee, and Sudakov (2017), we study the numbers $r_<(M^<,K^<_3)$ where $M^<$ is an ordered matching on $n$ vertices.We prove that almost all $n$-vertex ordered matchings $M^<$ with interval chromatic number 2 satisfy $r_<(M^<,K^<_3) \in \Omega((n/\log n)^{5/4})$ and $r_<(M^<,K^<_3) \in O(n^{7/4})$, improving a recent result by Rohatgi (2019).We also show that there are $n$-vertex ordered matchings $M^<$ with interval chromatic number at least 3 satisfying $r_<(M^<,K^<_3) \in \Omega((n/\log n)^{4/3})$, which asymptotically matches the best known lower bound on these off-diagonal ordered Ramsey numbers for general $n$-vertex ordered matchings.
Keywords
ordered Ramsey numbers, matchings, triangles
Permanent link
https://hdl.handle.net/20.500.14178/2491License
Full text of this result is licensed under: Creative Commons Uveďte původ-Neužívejte dílo komerčně-Nezpracovávejte 4.0 International