Skip to main content

Research publications repository

    • čeština
    • English
  • English 
    • čeština
    • English
  • Login
View Item 
  •   CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
  • CU Research Publications Repository
  • Fakulty
  • Faculty of Mathematics and Physics
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On ordered Ramsey numbers of matchings versus triangles

article in reviewed proceedings
Creative Commons License IconCreative Commons BY IconCreative Commons NC IconCreative Commons NC Icon
accepted version
  • no other version
Thumbnail
File can be accessed.Get publication
Author
Balko, MartinORCiD Profile - 0000-0001-9688-9489WoS Profile - I-2677-2017Scopus Profile - 55603104800
Poljak, Marian
Král’, Daniel
Nešetřil, Jaroslav

Show other authors

Publication date
2023
Published in
Proceedings of the 12th European Conference onCombinatorics, Graph Theory and Applications
Publisher / Publication place
Masaryk University Press (Praha)
ISBN / ISSN
ISBN: 978-80-280-0344-9eISSN: 2788-3116
Metadata
Show full item record
Collections
  • Faculty of Mathematics and Physics

This publication has a published version with DOI 10.5817/CZ.MUNI.EUROCOMB23-013

Abstract
For graphs $G^<$ and $H^<$ with linearly ordered vertex sets, the \emph{ordered Ramsey number} $r_<(G^<,H^<)$ is the smallest positive integer $N$ such that any red-blue coloring of the edges of the complete ordered graph $K^<_N$ on $N$ vertices contains either a blue copy of $G^<$ or a red copy of $H^<$.Motivated by a problem of Conlon, Fox, Lee, and Sudakov (2017), we study the numbers $r_<(M^<,K^<_3)$ where $M^<$ is an ordered matching on $n$ vertices.We prove that almost all $n$-vertex ordered matchings $M^<$ with interval chromatic number 2 satisfy $r_<(M^<,K^<_3) \in \Omega((n/\log n)^{5/4})$ and $r_<(M^<,K^<_3) \in O(n^{7/4})$, improving a recent result by Rohatgi (2019).We also show that there are $n$-vertex ordered matchings $M^<$ with interval chromatic number at least 3 satisfying $r_<(M^<,K^<_3) \in \Omega((n/\log n)^{4/3})$, which asymptotically matches the best known lower bound on these off-diagonal ordered Ramsey numbers for general $n$-vertex ordered matchings.
Keywords
ordered Ramsey numbers, matchings, triangles
Permanent link
https://hdl.handle.net/20.500.14178/2491
License

Full text of this result is licensed under: Creative Commons Uveďte původ-Neužívejte dílo komerčně-Nezpracovávejte 4.0 International

Show license terms

xmlui.dri2xhtml.METS-1.0.item-publication-version-

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV
 

 

About Repository

About This RepositoryResearch outputs typologyRequired metadataDisclaimerCC Linceses

Browse

All of DSpaceCommunities & CollectionsWorkplacesBy Issue DateAuthorsTitlesSubjectsThis CollectionWorkplacesBy Issue DateAuthorsTitlesSubjects

DSpace software copyright © 2002-2016  DuraSpace
Contact Us | Send Feedback
Theme by 
Atmire NV