Uncovering Relationships using Bayesian Networks: A Case Study on Conspiracy Theories

Autor
Weinerová, Josefína
Kwisthout, Johan
Renoij, Silja
Datum vydání
2024Publikováno v
Probabilistic Graphical ModelsNakladatel / Místo vydání
Proceedings of Machine Learning Research (Nijmegen)Ročník / Číslo vydání
246ISBN / ISSN
ISBN: 0-000-00000-0eISSN: 2640-3498Metadata
Zobrazit celý záznamAbstrakt
Bayesian networks (BNs) represent a probabilistic model that can visualize relationships between variables. We apply various BN structure learning algorithms to a large dataset from a Czech university entrance exam. This dataset includes a test of active, open-minded thinking designed by Jonathan Baron, as well as a test of students' attitudes toward various conspiracies. Using BNs, we were able to identify the structure of the conspiracies and their relationships with active open-minded thinking. We also compared results of different BN structure learning algorithms with results of selected standard data analysis methods.
Klíčová slova
Bayesian Networks, Data Analysis, Structural Learning of Bayesian Networks, Actively Open-minded Thinking, Conspiracy Theories
Trvalý odkaz
https://hdl.handle.net/20.500.14178/2669Licence
Licence pro užití plného textu výsledku: Creative Commons Uveďte původ 4.0 International